

Cooling from Down Under – Thermally Conductive Underfill

7th European Advanced Technology Workshop on Micropackaging and Thermal Management

> Paul W. Hough, Larry Wang 1, 2 February 2012

Presentation Outline

- Introduction
- Results and Discussions
 - Characteristic properties of underfill
 - Underfill performance
 - Reliability studies
- Conclusions

LORD AskUs How*

Modern Electronics

- Everywhere and everything
- Powered by "chips" or "die"
- Dominating Trends
 - More functionality
 - Smaller size and space

Advanced Materials For Automotive Electronics

Electronic Packaging

What is Packaging?

- Electrically connects the IC to the circuit board
- Protects the die from mechanical damage and contaminates
- Provides thermal distribution capability
- Allows for handling, testing, and shipping of the chip

Trends

- Higher component density
- Higher operating speed
- Higher power

Electronic Packages

- Chips are the brain for almost every function
- Package designs differ by how chips are connected with other chips, components and PCB
 - Functionality, Reliability, Efficient Manufacturing
- Smaller foot print, vertically integrated
 - Wirebond, simple or complicated, layer, stack...
 - Flip chip, small or large, FCOL, FCBGA...
 - PoP, MCM, SiP, TSV

Flip Chip versus Wire Bond

- First Level Interconnects
 - Wire Bond versus Solder Balls
- Attachment to Substrate
 - Wire Bond: Die attach adhesive
 - Flip Chip: Solder balls with or without underfill

Why Flip Chip

- Benefits
 - Shortest electrical path for fast signal transfer
 - Smallest footprint, higher I/O, and small form factor
 - All electrical connections are made in one reflow step
- Disadvantage
 - Smaller size, inflexible geometry, susceptible to stresses
- Flip Chip Packaging
 - Bare top smaller chip and minimal thermal problem
 - Molded package FCBGA, for large chip with low thermal demand
 - Thermal interface material on top large power chip, high demand for heat dissipation
 Flip Chip CABGA Cross Section

LORDAskUsHow^{**}

Why Underfill

- Protects flip chip and solder joints for reliability
 - CTE mismatch between silicon chip, solder balls, and substrate
 - Stress from assembly process
 - Stress from thermal cycling during real life usage
 - Stress from mechanical torture drop, impact, vibration
 - Environmental Protection: moisture, liquids, gases, etc
- Significant improvement in reliability
- Balance the benefit and costs (design, materials, processing time and cost, etc)

Thermal Interface Materials Background

What is a TIM?

• A compliant material that efficiently and reliably facilitates heat transfer between components of a package

What are the key properties?

- High thermal conductivity
- Low interfacial thermal resistance
- Processability
- Package reliability
- Adhesive strength
- Room Temperature Stability
- Reworkability
- Ionic Purity

Key Properties: Thermal Conductivity and Thermal Resistance

$$\frac{BLT}{EffectiveTC} = R_1 + \frac{BLT}{BulkTC} + R_3$$

TC: thermal conductivity R1:interfacial resistance (Die/Adhesive) R2:resistance of Adhesive R3 :interfacial resistance (Adhesive/Substrate)

Flip Chip Thermal Dissipation

- Flip chip heat dissipation primarily through top side
- Design depends on the thermal demand:
 - Bare chip: radiate to air
 - Molded packages: radiate via molding material to air
 - Non-molded: utilize TIM and heat spreader/sink
 - Microprocessor: utilize TIM + heat spreader/sink + fan

Intel Microprocessor

Confined Space

- Miniaturizing: both at chip level and package level
- Limited space: inside and/or outside of package
- Hermetic package: no air movement
- More heat built-up but no way to escape

TIM or Underfill or Both?

- Traditionally TIM and Underfill are separate materials
 - Incorporated on opposite sides of the chip
- ♦ TIM
 - Paste like, no strength (gel) or low-medium strength (adhesive)
 - High thermal conductivity (1 30 + W/mK)
 - Can be electrically conductive
- Underfill
 - Low viscosity liquid
 - High rigidity and strength
 - Electrically insulative
 - Almost a thermal barrier (<0.4 W/mK)

Motivation

Design an underfill for flip chip in confined space

- Processing capability
 - Good flow to small stand off, <25 microns
 - Rapid cure
- Performance
 - High thermal conductivity
 - Optimum modulus for solder ball and chip
 - High reliability
- Environmentally benign
 - Non-anhydride for health and safety concerns
 - Good moisture resistance

Formulation Development

- Resin system the carrier
 - Epoxy resins
 - Non-anhydride curing agents
 - Contribute to low viscosity, fast flow speed, rapid cure, Tg, modulus, high temp strength
- Fillers the enabler yet a limitation factor
 - Control/affect several key properties
 - Trade-offs
 - Thermal conductivity
 - CTE
 - Modulus
 - Viscosity, flow speed
- Additives

Results and Discussions

- Underfill basic properties and processing
- Underfill characterization
- In-package performance
 - Processing
 - Reliability Performance

Underfill Basic Properties

Property	ME-543
Resin chemistry	Epoxy/Amine
Filler Type	Ceramic
Filler particle size, average	5 µm
Viscosity at 25 °C	21,000 cps
Density	2.2 g/cc
Work life, 25 °C	36 hrs
Gel Time, 150 ℃	3 min
Cure Schedule	15 min at 165 ℃

Underfill Processing

Property	ME-543
Viscosity at 25 °C	21,000 cps
Viscosity at 90 °C	200 cps
Dispensing method	Line dispense or jetting
Substrate pre-heat	90-105 ℃
Underfill temperature	Ambient
Post-dispense staging	Optional, 90-100 ℃
Cure method	In-line oven or box oven
Cure Schedule	15 min @ 150 ℃
Minimum gap height	< 25 µm
Flow speed, 90 °C, 50 µm	
6.4 mm flow distance	8 seconds
12.7 mm flow distance	35 seconds
25.4 mm flow distance	120 seconds

Underfill Characterization

Property	ME-543
Thermal Conductivity, W/mK	1.2
DSC Cure Profile	
Onset, °C	118
Peak, °C	130
Enthalpy, J/gm	172
Glass Transition, Tg, $^{\circ}$ C	135
CTE α1 (<tg), ppm="" td="" ℃<=""><td>27</td></tg),>	27
CTE α2 (>Tg), ppm/℃	95
Elastic Modulus (<tg), gpa<="" td=""><td>5.5</td></tg),>	5.5
Elastic Modulus (>Tg), GPa	0.43
Thermal stability, temp @ 1% wt loss	340 °C

Customer Device Test

- ME-543 underfill in customer hard drive device
- 2 x 3 mm flip chip on flex circuit
- Jetting dispense, fast, accurate, and consistent
 - fast flow, full coverage, void free
 - Self filleting, with no creep on top of chip
 - Fast cure in production in-line oven

Optical and X-ray images of underfilled flip chip device

ME-543 In-Package Performance

- Dissipating heat through underfill layer to flex substrate
- Additional copper traces in flex conduct the heat out of hard drive hermetic package
- Thermal performance
 - Chips operate at lower temp for better efficiency
 - Permit future designs to increase functionality on the same chip

ME-543 Reliability

- Reliability tests by customer in a hard drive device
- Performance
 - Biased temperature/humidity BTH, 168 hrs 85°C/85% RH
 - 0/45 failure
 - High Temp Operation Life HTOL, 1000 hrs 125 °C
 - 0/45 failure
 - Thermal cycling test, -55 to 125 $\ensuremath{\mathbb{C}}$, 500 cycles
 - 0/45 failure
 - Thermal shock test, -55 to 125 °C, 3000 cycles
 - 0/45 failure

Summary & Conclusions

- A thermally conductive underfill has been developed with novel chemistry, optimum material properties and processing characteristics
- Innovative approach allows heat dissipation through underfill layer in a confined space in the hermetic package
- Proprietary ceramic fillers enable high thermal conductivity of 1.2 W/mK and maintain electrical insulation
- Fine particle size fillers for flip chip devices with stand-off heights of < 25 µm
- Fast and uniform flow for a void-free coverage with no separation or striation throughout the flow front.
- Excellent device reliability both in test assembly and in customer device

Thank You!

LORD Corporation

A Global, Market-Focused Company, Creating & Delivering Value to Our Customers

Questions?

Paul Hough paul.hough@lord.com

